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Non-commuting Algebra

We have defined Pn and Qn with P0(x) = x and Q0(x) = 1. If we instead let P0(x) = x and Q0(x) = y, it
can be verified that we get slightly different formula:
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But suppose that x and y do not commute, but rather satisfy the formula yx = qxy. What happens? If
we define [
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then the q-version of the binomial formula is: [1]
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Conjecture 1. If yx = qxy and if Pn(x, y) and Pn(x, y) are defined by

P0 = x Q0 = y

Pn+1 = aP 2
n − cQ2

n Qn+1 = aPnQn + aQnPn + bQnQn.

then
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It is not clear to us that the proof we provided for Theorem (??) is aplicable to this more general
conjecture.
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