
Cryptography, Linux, and You

Hal Canary

h3 at halcanary dot org

http://halcanary.org/

SWFLUG, 2007-04-10

8CAFA2B3

E0B5 263B 6D18 08E5 E9D6 0AFF 7F03 9625 8CAF A2B3

1

Contents:

⇒ Cryptographic Hash Functions

⇒ Symmetric Cryptography

⇒ Symmetric Encryption with GPG

⇒ Passphrase Strength

⇒ Encrypting large files with Aespipe

⇒ Public-key Cryptography

⇒ Public-key Encryption with GPG

⇒ Digital Signatures with GPG

⇒ Encrypted communication with SSL

⇒ Encrypted communication with SSH

2

Cryptographic Hash Functions

A checksum is a mathematical function that can be used to

verify that an input has not been accidentally changed.

A cryptographic hash function has the additional property that

it would be very hard for an attacker to make a change in the

input and produce the same output.

Hash Function: Bits: Broken?
md5sum 128 Yes
sha1sum 160 Yes

sha256sum 256 No
sha512sum 512 No

3

Example:

$ echo "hello world" > test1

$ echo "hello world." > test2

$ sha1sum test1 test2

22596363b3de40b06f981fb85d82312e8c0ed511 test1

3337bbba15e6a05a29dd0fc658e0541ee185c024 test2

$ sha1sum test1 test2 > SHA1SUM.txt

$ sha1sum -c SHA1SUM.txt

test1: OK

test2: OK

4

$ cat test2

hello world.

$ echo "" >> test2

$ cat test2

hello world.

$ sha1sum -c SHA1SUM.txt

test1: OK

test2: FAILED

sha1sum: WARNING: 1 of 2 computed checksums did NOT match

$

5

Symmetric Cryptography

6

Symmetric Encryption with GPG

Symmetric encryption means that you use the same key to en-
crypt a message as to decrypt it. An example using GnuPG:

$ mkdir secretstuff

$ mv test1 test2 secretstuff/

$ tar -czf secretstuff.tgz secretstuff

$ gpg -c secretstuff.tgz

Enter passphrase:

Repeat passphrase:

$ ls -od secretstuff*

drwxrwxr-x 2 hal 4096 Mar 15 14:12 secretstuff

-rw-rw-r-- 1 hal 197 Mar 15 14:12 secretstuff.tgz

-rw-rw-r-- 1 hal 255 Mar 15 14:14 secretstuff.tgz.gpg

7

$ shred -n 2 -u secretstuff.tgz

$ ls -od secretstuff.*

-rw-rw-r-- 1 hal 255 Mar 15 14:14 secretstuff.tgz.gpg

$ gpg secretstuff.tgz.gpg

gpg: CAST5 encrypted data

Enter passphrase:

gpg: encrypted with 1 passphrase

gpg: original file name='secretstuff.tgz'

gpg: WARNING: message was not integrity protected

$ /bin/ls -od secretstuff.*

-rw-rw-r-- 1 hal 197 Mar 15 14:23 secretstuff.tgz

-rw-rw-r-- 1 hal 255 Mar 15 14:14 secretstuff.tgz.gpg

$

8

Passphrase Strength

http://www.iusmentis.com/security/passphrasefaq/strength/

.855 Nonsense phrase.
betty was smoking tires in her peace of pipe organs and playing tuna fish.

1.05 A random bunch of characters.
A6:o@6 Ls+\` uGX\%3y[k

1.34 Odd capitalization/punctuation and nonsense.
Web oF thE Trust is BrokEn cAn You Glue it Back ToGether? and give it xRays.

.280 An average phrase.
There is a sucker born every minute.

1.125 Random words.
paper factors difference votes behind chain treaties never group

.761 Phrases with some random letters.
Ignorance is bliss. spgemxk Education cures ignorance.

9

Really good passphrases:

$ echo 128/8 | bc

16

$ head -c 16 /dev/random | hexdump -e "32/1 \"%02x\" \"\n\""

de4226f80c92e9de1030f4811b8b9a07

$ head -c 16 /dev/random | base64

3kIm+AyS6d4QMPSBG4uaBw==

$ head -c 18 /dev/random | base64

3kIm+AyS6d4QMPSBG4uaB0Gk

10

Encrypting large files with Aespipe

Why use Aespipe? It is much faster than GPG—this makes a

difference for big files. This program can be found at

http://loop-aes.sourceforge.net/

What to use as a key? Gpg accepts any length, but aespipe

wants a longer passphrase.

11

First create a passphrase and leave it in a file:
head -c 57 /dev/random | base64 > pass.txt

Aespipe can then use this passphrase:
tar cz secretstuff | aespipe -P pass.txt > secretstuff.tgz.aes

You can even gpg-encrypt the password file:
head -c 57 /dev/random | base64 | gpg -c -a > pass.gpg

tar cz secretstuff | aespipe -K pass.gpg > secretstuff.tgz.aes

To decrypt:
aespipe -d -P pass.txt < secretstuff.tgz.aes | tar xz

aespipe -d -K pass.gpg < secretstuff.tgz.aes | tar xz

Keep the keyfile in a safe place!

(I got ∼ 5 MbB/s using this method)

12

Public-key Crytography

13

Public-key Encryption with GPG

Public-key cryptography (PKC) uses different keys to encrypt
and decrypt your message!

encrypt : (cleartext,publickey)→ cyphertext

decrypt : (cyphertext,privatekey)→ cleartext

OpenPGP is a standard for PKC and is based on the original PGP
(pretty good privacy) program. GPG is a F/OSS implementation
of the OpenPGP standard and is included in most distros. After
you have generated a key pair, you will want to publish the public
key and keep the private key safe.

There are two modes that you can use PKC. To encrypt a file
for someone else, you will need their public key. Only they will
be able to decrypt it because only they have their private key.

14

To sign a file, you will need your own private key. Anyone with

your public key can verify that signature.

Use the command gpg --gen-key to generate a new key pair.

gpg --armor --export 8CAFA2B3 will export the public side of the

key in a form you can publish.

Send the key to a public keyserver so anyone can search for it:

gpg --send-keys 8CAFA2B3 --keyserver wwwkeys.eu.pgp.net

Get the fingerprint of your key with gpg --fingerprint 8CAFA2B3.

Encrypt to NAME and sign a file with

gpg --sign --encrypt --recipient "NAME" FILE.

15

Digital Signatures with GPG

sign : (text,privatekey)→ signature

verify : (text,publickey, signature)→ {pass or fail}

Things to do with digital signatures:

1) Signing a plain text document

2) Signing a sha1sum

3) Signing a random binary

4) Signing an email

5) Signing another public key

16

Signing a plain text document

Use gpg --clearsign file.txt to create a file called file.txt.asc.
Use gpg --verify to check a signature. Here’s an example:
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed
do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.7 (GNU/Linux)

iD8DBQFF+Z4kfwOWJYyvorMRCu/IAJ4o4ZCLKR2CJyEk2tTX6GnUznzW4ACfRTlZ
qLBEmOzTKzRhoDX7Yi4IXuE=
=cgGl
-----END PGP SIGNATURE-----

17

Signing a sha1sum

Use the command

sha1sum test1 test2 | gpg --clearsign > SHA1SUM

to produce a signed hash of these two files. Verify the sig-

nature with gpg --verify SHA1SUM and verify the checksum with

sha1sum -c SHA1SUM.

Test them both with:

gpg < SHA1SUM | sha1sum -c

18

An example from Red Hat:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

834fd761b9c0a5dc550d10d97307dac998103a68 FC-6-i386-rescuecd.iso
cc503d99c9d736af9052904a6ab14931b0850078 FC-6-i386-disc1.iso
3051710e6b2f1d17a14ede0ebb74761c29cda954 FC-6-i386-disc2.iso
5357ce21f8766db385b25923216a430b694bca5d FC-6-i386-disc3.iso
d6133ab5ccf19431c14fd2ad85bce03c9834ef87 FC-6-i386-disc4.iso
6722f95b97e5118fa26bafa5b9f622cc7d49530c FC-6-i386-DVD.iso
22327af62d6376916e209b0c4934540e14d5664a FC-6-i386-disc5.iso
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.2.6 (GNU/Linux)

iD8DBQFFNo/utEJp0E8qb9IRAsf7AJ9ZqiDlKqJfAh8g5QHyDMmPOzNbTACfbyGw
hB8bkLBT+6ANW6y8iBmlxz8=
=O/Le
-----END PGP SIGNATURE-----

19

Signing a random binary

gpg --armor --detach-sign FILE will create a separate file (FILE.asc)

with a signed checksum. This has a disadvantage over the

sha1+gpg method in that you need a copy of GPG and your

public key to verify the checksum.

20

21

Encrypted communication with SSL

SSL stands for “Secure Socket Layer.” It is used for https com-

munication and makes use of PKC. Every server has a public-

private key pair. Most of the time, your browser decides to trust

a server because that server gives a copy of its public key that

has been digitally signed by a certifying authority (CA) that your

browser has been programmed to trust:

The CA is there to prevent a man-in-the-middle attack.

22

Screenshot from Firefox:

23

Screenshot from Firefox:

24

Encrypted communication with SSH

SSH stands for ”Secure SHell.” There are several implementa-
tions of the standard. Since there are no central CAs for SSH,
you need to manually verify a server’s key fingerprint before try-
ing to log on. In this sense, it is like PGP.

I carry around a slip of paper with my server’s SSH key fingerprint
on it.

$ (cd /etc/ssh/;for x in s*.pub;do ssh-keygen -l -f $x;done)
1024 11:70:ad:d8:15:ec:75:89:22:c1:b7:dc:b3:30:e1:10 ssh_host_dsa_key.pub
2048 67:57:91:96:66:60:9b:f0:b0:90:1a:a6:76:12:b7:c5 ssh_host_key.pub
2048 55:be:0d:d2:7f:9d:2e:3f:a6:2d:03:fa:a4:b6:09:7b ssh_host_rsa_key.pub

$ ssh example.com
The authenticity of host 'example.com (71.3.117.142)' can't be
established.
RSA key fingerprint is 55:be:0d:d2:7f:9d:2e:3f:a6:2d:03:fa:a4:b6:09:7b.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'example.com,71.3.117.142' (RSA) to
the list of known hosts.

25

Fun things to do with SSH.

1) Copy files:
scp FILE hal@example.com:.

scp hal@example.com:FILE .

2) Copy directories:
scp -r directory hal@example.com:

rsync -e ssh -avz directory hal@example.com:

(note that rync can either connect to a remote sshd daemon or
a remote rsync daemon!)

3) Forward ports.
ssh -Y hal@example.com

ssh -D 12345 hal@example.com

26

27

Firefox−→Edit−→Preferences−→Advanced−→Network−→Settings

28

Conclusions?

29

